Left Termination of the query pattern sameleaves_in_2(g, g) w.r.t. the given Prolog program could successfully be proven:



Prolog
  ↳ PrologToPiTRSProof

Clauses:

sameleaves(leaf(L), leaf(L)).
sameleaves(tree(T1, T2), tree(S1, S2)) :- ','(getleave(T1, T2, L, T), ','(getleave(S1, S2, L, S), sameleaves(T, S))).
getleave(leaf(A), C, A, C).
getleave(tree(A, B), C, L, O) :- getleave(A, tree(B, C), L, O).

Queries:

sameleaves(g,g).

We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

sameleaves_in(tree(T1, T2), tree(S1, S2)) → U1(T1, T2, S1, S2, getleave_in(T1, T2, L, T))
getleave_in(tree(A, B), C, L, O) → U4(A, B, C, L, O, getleave_in(A, tree(B, C), L, O))
getleave_in(leaf(A), C, A, C) → getleave_out(leaf(A), C, A, C)
U4(A, B, C, L, O, getleave_out(A, tree(B, C), L, O)) → getleave_out(tree(A, B), C, L, O)
U1(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → U2(T1, T2, S1, S2, T, getleave_in(S1, S2, L, S))
U2(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → U3(T1, T2, S1, S2, sameleaves_in(T, S))
sameleaves_in(leaf(L), leaf(L)) → sameleaves_out(leaf(L), leaf(L))
U3(T1, T2, S1, S2, sameleaves_out(T, S)) → sameleaves_out(tree(T1, T2), tree(S1, S2))

The argument filtering Pi contains the following mapping:
sameleaves_in(x1, x2)  =  sameleaves_in(x1, x2)
tree(x1, x2)  =  tree(x1, x2)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x4, x5)
getleave_in(x1, x2, x3, x4)  =  getleave_in(x1, x2)
U4(x1, x2, x3, x4, x5, x6)  =  U4(x6)
leaf(x1)  =  leaf(x1)
getleave_out(x1, x2, x3, x4)  =  getleave_out(x3, x4)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x5, x6)
U3(x1, x2, x3, x4, x5)  =  U3(x5)
sameleaves_out(x1, x2)  =  sameleaves_out

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

sameleaves_in(tree(T1, T2), tree(S1, S2)) → U1(T1, T2, S1, S2, getleave_in(T1, T2, L, T))
getleave_in(tree(A, B), C, L, O) → U4(A, B, C, L, O, getleave_in(A, tree(B, C), L, O))
getleave_in(leaf(A), C, A, C) → getleave_out(leaf(A), C, A, C)
U4(A, B, C, L, O, getleave_out(A, tree(B, C), L, O)) → getleave_out(tree(A, B), C, L, O)
U1(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → U2(T1, T2, S1, S2, T, getleave_in(S1, S2, L, S))
U2(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → U3(T1, T2, S1, S2, sameleaves_in(T, S))
sameleaves_in(leaf(L), leaf(L)) → sameleaves_out(leaf(L), leaf(L))
U3(T1, T2, S1, S2, sameleaves_out(T, S)) → sameleaves_out(tree(T1, T2), tree(S1, S2))

The argument filtering Pi contains the following mapping:
sameleaves_in(x1, x2)  =  sameleaves_in(x1, x2)
tree(x1, x2)  =  tree(x1, x2)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x4, x5)
getleave_in(x1, x2, x3, x4)  =  getleave_in(x1, x2)
U4(x1, x2, x3, x4, x5, x6)  =  U4(x6)
leaf(x1)  =  leaf(x1)
getleave_out(x1, x2, x3, x4)  =  getleave_out(x3, x4)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x5, x6)
U3(x1, x2, x3, x4, x5)  =  U3(x5)
sameleaves_out(x1, x2)  =  sameleaves_out


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SAMELEAVES_IN(tree(T1, T2), tree(S1, S2)) → U11(T1, T2, S1, S2, getleave_in(T1, T2, L, T))
SAMELEAVES_IN(tree(T1, T2), tree(S1, S2)) → GETLEAVE_IN(T1, T2, L, T)
GETLEAVE_IN(tree(A, B), C, L, O) → U41(A, B, C, L, O, getleave_in(A, tree(B, C), L, O))
GETLEAVE_IN(tree(A, B), C, L, O) → GETLEAVE_IN(A, tree(B, C), L, O)
U11(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → U21(T1, T2, S1, S2, T, getleave_in(S1, S2, L, S))
U11(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → GETLEAVE_IN(S1, S2, L, S)
U21(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → U31(T1, T2, S1, S2, sameleaves_in(T, S))
U21(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → SAMELEAVES_IN(T, S)

The TRS R consists of the following rules:

sameleaves_in(tree(T1, T2), tree(S1, S2)) → U1(T1, T2, S1, S2, getleave_in(T1, T2, L, T))
getleave_in(tree(A, B), C, L, O) → U4(A, B, C, L, O, getleave_in(A, tree(B, C), L, O))
getleave_in(leaf(A), C, A, C) → getleave_out(leaf(A), C, A, C)
U4(A, B, C, L, O, getleave_out(A, tree(B, C), L, O)) → getleave_out(tree(A, B), C, L, O)
U1(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → U2(T1, T2, S1, S2, T, getleave_in(S1, S2, L, S))
U2(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → U3(T1, T2, S1, S2, sameleaves_in(T, S))
sameleaves_in(leaf(L), leaf(L)) → sameleaves_out(leaf(L), leaf(L))
U3(T1, T2, S1, S2, sameleaves_out(T, S)) → sameleaves_out(tree(T1, T2), tree(S1, S2))

The argument filtering Pi contains the following mapping:
sameleaves_in(x1, x2)  =  sameleaves_in(x1, x2)
tree(x1, x2)  =  tree(x1, x2)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x4, x5)
getleave_in(x1, x2, x3, x4)  =  getleave_in(x1, x2)
U4(x1, x2, x3, x4, x5, x6)  =  U4(x6)
leaf(x1)  =  leaf(x1)
getleave_out(x1, x2, x3, x4)  =  getleave_out(x3, x4)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x5, x6)
U3(x1, x2, x3, x4, x5)  =  U3(x5)
sameleaves_out(x1, x2)  =  sameleaves_out
U31(x1, x2, x3, x4, x5)  =  U31(x5)
U21(x1, x2, x3, x4, x5, x6)  =  U21(x5, x6)
U41(x1, x2, x3, x4, x5, x6)  =  U41(x6)
SAMELEAVES_IN(x1, x2)  =  SAMELEAVES_IN(x1, x2)
U11(x1, x2, x3, x4, x5)  =  U11(x3, x4, x5)
GETLEAVE_IN(x1, x2, x3, x4)  =  GETLEAVE_IN(x1, x2)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

SAMELEAVES_IN(tree(T1, T2), tree(S1, S2)) → U11(T1, T2, S1, S2, getleave_in(T1, T2, L, T))
SAMELEAVES_IN(tree(T1, T2), tree(S1, S2)) → GETLEAVE_IN(T1, T2, L, T)
GETLEAVE_IN(tree(A, B), C, L, O) → U41(A, B, C, L, O, getleave_in(A, tree(B, C), L, O))
GETLEAVE_IN(tree(A, B), C, L, O) → GETLEAVE_IN(A, tree(B, C), L, O)
U11(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → U21(T1, T2, S1, S2, T, getleave_in(S1, S2, L, S))
U11(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → GETLEAVE_IN(S1, S2, L, S)
U21(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → U31(T1, T2, S1, S2, sameleaves_in(T, S))
U21(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → SAMELEAVES_IN(T, S)

The TRS R consists of the following rules:

sameleaves_in(tree(T1, T2), tree(S1, S2)) → U1(T1, T2, S1, S2, getleave_in(T1, T2, L, T))
getleave_in(tree(A, B), C, L, O) → U4(A, B, C, L, O, getleave_in(A, tree(B, C), L, O))
getleave_in(leaf(A), C, A, C) → getleave_out(leaf(A), C, A, C)
U4(A, B, C, L, O, getleave_out(A, tree(B, C), L, O)) → getleave_out(tree(A, B), C, L, O)
U1(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → U2(T1, T2, S1, S2, T, getleave_in(S1, S2, L, S))
U2(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → U3(T1, T2, S1, S2, sameleaves_in(T, S))
sameleaves_in(leaf(L), leaf(L)) → sameleaves_out(leaf(L), leaf(L))
U3(T1, T2, S1, S2, sameleaves_out(T, S)) → sameleaves_out(tree(T1, T2), tree(S1, S2))

The argument filtering Pi contains the following mapping:
sameleaves_in(x1, x2)  =  sameleaves_in(x1, x2)
tree(x1, x2)  =  tree(x1, x2)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x4, x5)
getleave_in(x1, x2, x3, x4)  =  getleave_in(x1, x2)
U4(x1, x2, x3, x4, x5, x6)  =  U4(x6)
leaf(x1)  =  leaf(x1)
getleave_out(x1, x2, x3, x4)  =  getleave_out(x3, x4)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x5, x6)
U3(x1, x2, x3, x4, x5)  =  U3(x5)
sameleaves_out(x1, x2)  =  sameleaves_out
U31(x1, x2, x3, x4, x5)  =  U31(x5)
U21(x1, x2, x3, x4, x5, x6)  =  U21(x5, x6)
U41(x1, x2, x3, x4, x5, x6)  =  U41(x6)
SAMELEAVES_IN(x1, x2)  =  SAMELEAVES_IN(x1, x2)
U11(x1, x2, x3, x4, x5)  =  U11(x3, x4, x5)
GETLEAVE_IN(x1, x2, x3, x4)  =  GETLEAVE_IN(x1, x2)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 4 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

GETLEAVE_IN(tree(A, B), C, L, O) → GETLEAVE_IN(A, tree(B, C), L, O)

The TRS R consists of the following rules:

sameleaves_in(tree(T1, T2), tree(S1, S2)) → U1(T1, T2, S1, S2, getleave_in(T1, T2, L, T))
getleave_in(tree(A, B), C, L, O) → U4(A, B, C, L, O, getleave_in(A, tree(B, C), L, O))
getleave_in(leaf(A), C, A, C) → getleave_out(leaf(A), C, A, C)
U4(A, B, C, L, O, getleave_out(A, tree(B, C), L, O)) → getleave_out(tree(A, B), C, L, O)
U1(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → U2(T1, T2, S1, S2, T, getleave_in(S1, S2, L, S))
U2(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → U3(T1, T2, S1, S2, sameleaves_in(T, S))
sameleaves_in(leaf(L), leaf(L)) → sameleaves_out(leaf(L), leaf(L))
U3(T1, T2, S1, S2, sameleaves_out(T, S)) → sameleaves_out(tree(T1, T2), tree(S1, S2))

The argument filtering Pi contains the following mapping:
sameleaves_in(x1, x2)  =  sameleaves_in(x1, x2)
tree(x1, x2)  =  tree(x1, x2)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x4, x5)
getleave_in(x1, x2, x3, x4)  =  getleave_in(x1, x2)
U4(x1, x2, x3, x4, x5, x6)  =  U4(x6)
leaf(x1)  =  leaf(x1)
getleave_out(x1, x2, x3, x4)  =  getleave_out(x3, x4)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x5, x6)
U3(x1, x2, x3, x4, x5)  =  U3(x5)
sameleaves_out(x1, x2)  =  sameleaves_out
GETLEAVE_IN(x1, x2, x3, x4)  =  GETLEAVE_IN(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

GETLEAVE_IN(tree(A, B), C, L, O) → GETLEAVE_IN(A, tree(B, C), L, O)

R is empty.
The argument filtering Pi contains the following mapping:
tree(x1, x2)  =  tree(x1, x2)
GETLEAVE_IN(x1, x2, x3, x4)  =  GETLEAVE_IN(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

GETLEAVE_IN(tree(A, B), C) → GETLEAVE_IN(A, tree(B, C))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

U11(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → U21(T1, T2, S1, S2, T, getleave_in(S1, S2, L, S))
U21(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → SAMELEAVES_IN(T, S)
SAMELEAVES_IN(tree(T1, T2), tree(S1, S2)) → U11(T1, T2, S1, S2, getleave_in(T1, T2, L, T))

The TRS R consists of the following rules:

sameleaves_in(tree(T1, T2), tree(S1, S2)) → U1(T1, T2, S1, S2, getleave_in(T1, T2, L, T))
getleave_in(tree(A, B), C, L, O) → U4(A, B, C, L, O, getleave_in(A, tree(B, C), L, O))
getleave_in(leaf(A), C, A, C) → getleave_out(leaf(A), C, A, C)
U4(A, B, C, L, O, getleave_out(A, tree(B, C), L, O)) → getleave_out(tree(A, B), C, L, O)
U1(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → U2(T1, T2, S1, S2, T, getleave_in(S1, S2, L, S))
U2(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → U3(T1, T2, S1, S2, sameleaves_in(T, S))
sameleaves_in(leaf(L), leaf(L)) → sameleaves_out(leaf(L), leaf(L))
U3(T1, T2, S1, S2, sameleaves_out(T, S)) → sameleaves_out(tree(T1, T2), tree(S1, S2))

The argument filtering Pi contains the following mapping:
sameleaves_in(x1, x2)  =  sameleaves_in(x1, x2)
tree(x1, x2)  =  tree(x1, x2)
U1(x1, x2, x3, x4, x5)  =  U1(x3, x4, x5)
getleave_in(x1, x2, x3, x4)  =  getleave_in(x1, x2)
U4(x1, x2, x3, x4, x5, x6)  =  U4(x6)
leaf(x1)  =  leaf(x1)
getleave_out(x1, x2, x3, x4)  =  getleave_out(x3, x4)
U2(x1, x2, x3, x4, x5, x6)  =  U2(x5, x6)
U3(x1, x2, x3, x4, x5)  =  U3(x5)
sameleaves_out(x1, x2)  =  sameleaves_out
U21(x1, x2, x3, x4, x5, x6)  =  U21(x5, x6)
SAMELEAVES_IN(x1, x2)  =  SAMELEAVES_IN(x1, x2)
U11(x1, x2, x3, x4, x5)  =  U11(x3, x4, x5)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

U11(T1, T2, S1, S2, getleave_out(T1, T2, L, T)) → U21(T1, T2, S1, S2, T, getleave_in(S1, S2, L, S))
U21(T1, T2, S1, S2, T, getleave_out(S1, S2, L, S)) → SAMELEAVES_IN(T, S)
SAMELEAVES_IN(tree(T1, T2), tree(S1, S2)) → U11(T1, T2, S1, S2, getleave_in(T1, T2, L, T))

The TRS R consists of the following rules:

getleave_in(tree(A, B), C, L, O) → U4(A, B, C, L, O, getleave_in(A, tree(B, C), L, O))
getleave_in(leaf(A), C, A, C) → getleave_out(leaf(A), C, A, C)
U4(A, B, C, L, O, getleave_out(A, tree(B, C), L, O)) → getleave_out(tree(A, B), C, L, O)

The argument filtering Pi contains the following mapping:
tree(x1, x2)  =  tree(x1, x2)
getleave_in(x1, x2, x3, x4)  =  getleave_in(x1, x2)
U4(x1, x2, x3, x4, x5, x6)  =  U4(x6)
leaf(x1)  =  leaf(x1)
getleave_out(x1, x2, x3, x4)  =  getleave_out(x3, x4)
U21(x1, x2, x3, x4, x5, x6)  =  U21(x5, x6)
SAMELEAVES_IN(x1, x2)  =  SAMELEAVES_IN(x1, x2)
U11(x1, x2, x3, x4, x5)  =  U11(x3, x4, x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

SAMELEAVES_IN(tree(T1, T2), tree(S1, S2)) → U11(S1, S2, getleave_in(T1, T2))
U21(T, getleave_out(L, S)) → SAMELEAVES_IN(T, S)
U11(S1, S2, getleave_out(L, T)) → U21(T, getleave_in(S1, S2))

The TRS R consists of the following rules:

getleave_in(tree(A, B), C) → U4(getleave_in(A, tree(B, C)))
getleave_in(leaf(A), C) → getleave_out(A, C)
U4(getleave_out(L, O)) → getleave_out(L, O)

The set Q consists of the following terms:

getleave_in(x0, x1)
U4(x0)

We have to consider all (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

SAMELEAVES_IN(tree(T1, T2), tree(S1, S2)) → U11(S1, S2, getleave_in(T1, T2))
U21(T, getleave_out(L, S)) → SAMELEAVES_IN(T, S)
U11(S1, S2, getleave_out(L, T)) → U21(T, getleave_in(S1, S2))
The following rules are removed from R:

getleave_in(leaf(A), C) → getleave_out(A, C)
Used ordering: POLO with Polynomial interpretation [25]:

POL(SAMELEAVES_IN(x1, x2)) = 2·x1 + 2·x2   
POL(U11(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3   
POL(U21(x1, x2)) = 2·x1 + 2·x2   
POL(U4(x1)) = x1   
POL(getleave_in(x1, x2)) = 1 + x1 + x2   
POL(getleave_out(x1, x2)) = 1 + 2·x1 + x2   
POL(leaf(x1)) = 2·x1   
POL(tree(x1, x2)) = 2 + x1 + x2   



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

getleave_in(tree(A, B), C) → U4(getleave_in(A, tree(B, C)))
U4(getleave_out(L, O)) → getleave_out(L, O)

The set Q consists of the following terms:

getleave_in(x0, x1)
U4(x0)

We have to consider all (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.